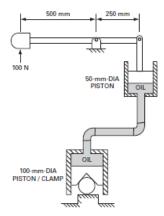


Mechatronics Engineering Program / Mechanical Power Engineering Department

Tanta University Faculty of Engineering

			Total Assessment Marks: 40	
Date	14-Jauary - 2025	No. of Pages (2)	Allowed time	3 hrs
Year/ Level	4 th Level	Fall Term Exam		
Course Title	Hydraulic/Pneumatic Systems Design	Academic Year 2024/2025	Course Code	MEP331

Remarks: NO REMARKS


Please, answer the following questions (assume any missing data):-

Question One, (12 Marks):

- a) Name and sketch the six basic components required in a hydraulic circuit.
- b) List five applications of fluid power in industry.
- c) What are the four primary functions of a hydraulic fluid?
- d) Draw the hydraulic symbols for the following components: bidirectional hydraulic motors solenoid-actuated, spring centred, tandem centre, four ways pressure reducing valve check valve.

Question Two, (8 Marks):

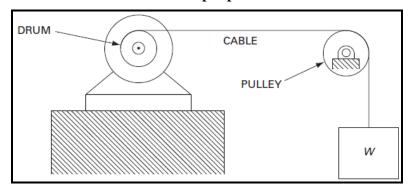
a) The following Figure shows a mechanical/hydraulic system used for clamping a cylindrical workpiece during a machining operation. If the machine operator applies a 100-N force to the lever as shown, what clamping force is applied to the workpiece?

- b) A hydraulic cylinder is to compress a car body down to bale size in 8 s. The operation requires a 3 m stroke and a 40,000-N force. If a 10 MPa pump has been selected, and assuming the cylinder is 100% efficient, find:
 - i. The required piston area (m²)
 - ii. The necessary pump flow rate (m^3/s)
 - iii. The hydraulic power (kW) delivered to the cylinder
 - iv. The output power (kW) delivered by the cylinder to the load

Question Three, (8 Marks):

- a) What is the purpose of cushion devices in hydraulic cylinders? Discuss using a neat sketch of the operation principle.
- a) The system shown in next Figure, has the following data

pressure = 1×10^5 kPa weight of load = 4000 N motor speed = 30 rpm drum radius = 0.3 m


Mechatronics Engineering Program / Mechanical Power Engineering Department

Tanta University

Faculty of Engineering

Determine the flowrate in units of m³/s and the output power of 100% efficient motor in kW.

Question Four, (12 Marks):

- a) Sketch a complete hydraulic circuit shows the function of the meter-out speed control of a hydraulic cylinder. Please, write the names of each component in the sketch.
- b) Sequences pressure valves are useful in multiple applications. Sketch a complete hydraulic circuit for the use of these valves in:
 - i. a circuit that produces continuous reciprocation of a hydraulic cylinder,
 - ii. controlling the sequence of operations of two double-acting cylinders.

End of questions

Good Luck

EXAMINERS	Prof. Dr. Ayman Bakry	
I I		
I I		
:		i i
Li		